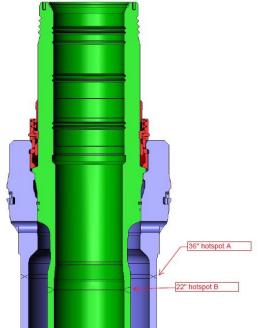


Real Time Monitoring to Support Workover and Intervention Operations on Ageing Conductors 02/04/2014

02/01/2011

Agenda

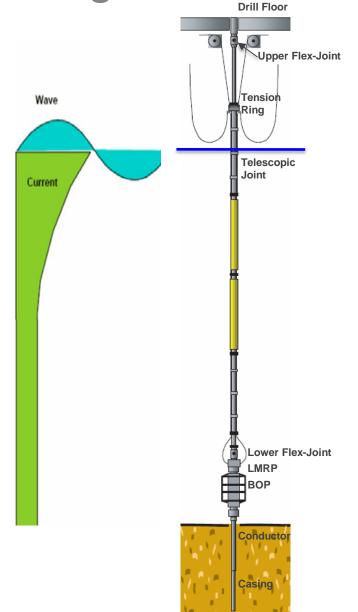
- Wellhead & Conductor Fatigue
- Workover & Intervention
- Real time monitoring
- Case Study
 - Summary
 - System overview
 - Data loggers
 - Environmental monitoring
 - Cable installation
 - Data management
 - Software
- Summary
- Questions



Wellhead & Conductor fatigue

Industry Issues

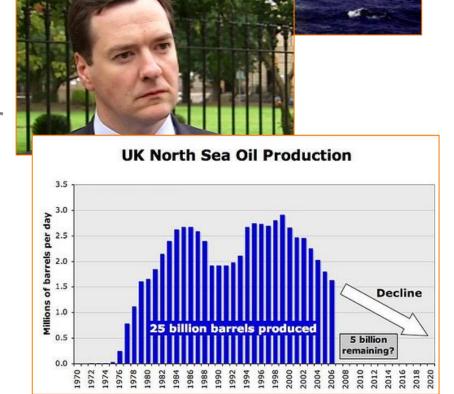
- Significant loading from:
 - Environmental interaction
 - Axial loads associated with hang-off of internal casings
- 'Fatigue hotspots'
- Analytical fatigue response conservative
- Safe operations require understanding of strength & durability



Wellhead & Conductor fatigue

Environmental Loading

- 2 primary causes of environmental loading:
 - VIV
 - Wave induced loading

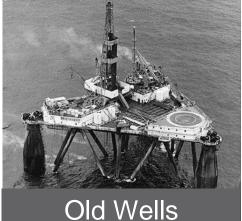


Workover & Intervention

Introduction

 Critical for future profitability of brownfield assets

- Extending field life & maximising recovery rates
- Europe- biggest market for intervention activity (32%)


Workover & Intervention

Specific challenges



Taller & Heavier Stacks

- Xmas tree, BOP, LMRP, **EDP**
- Total stack taller & heavier than during drilling
- Enhanced lever arm effect

- Returning to old wells
- Often not designed for size of modern equipment (e.g. 5 ram BOP)

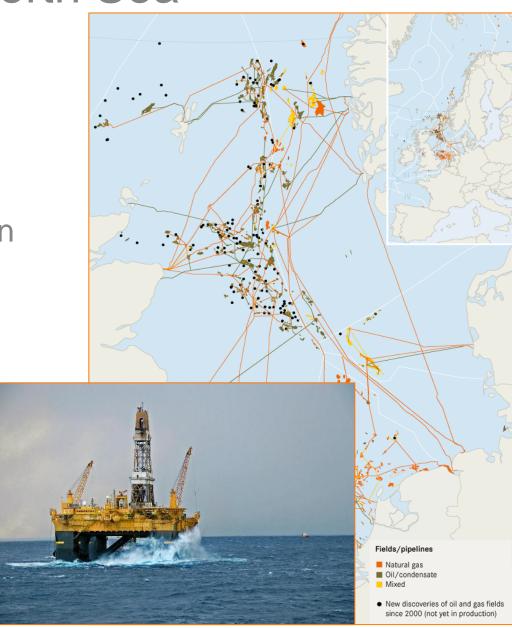
Limited Fatigue Data

- Often very little data on accumulated well fatigue damage
- Causes inaccuracies in analytical model

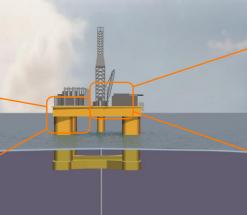
Real Time Monitoring

Introduction

- Simple & rapidly deployable system
- ROV installable & retrievable
- Provides early warning of excessive BOP motion
- Calculates wellhead fatigue in real time
 - Improves confidence
 - Reduces uncertainty



Project Background


- UKCS
- Workover & intervention
- Semisub
- Issues:
 - Old well
 - Big BOP
 - Limited fatigue history

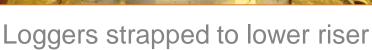
Wellhead & conductor monitoring System

3 x standalone loggers on lower riser

1 x hardwired logger on LMRP 2 x standalone loggers on Tree/LMRP

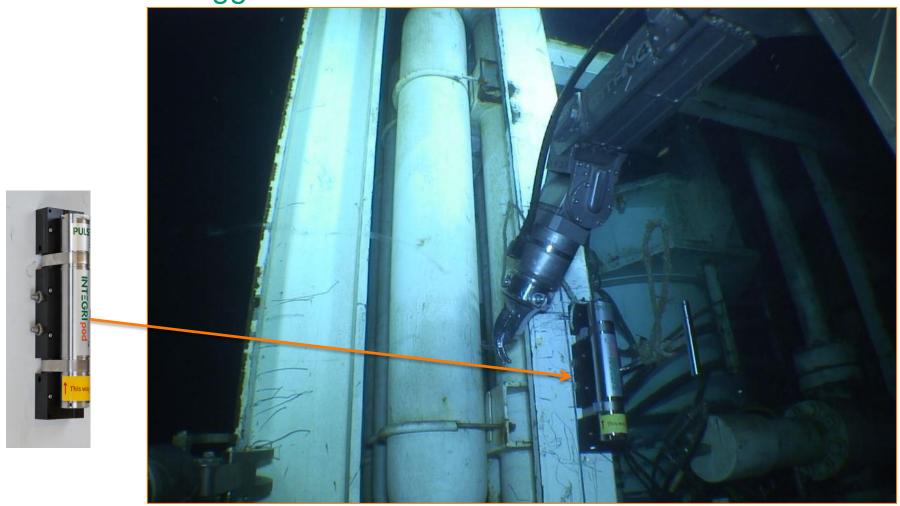
www.pulse-monitoring.com

Data loggers



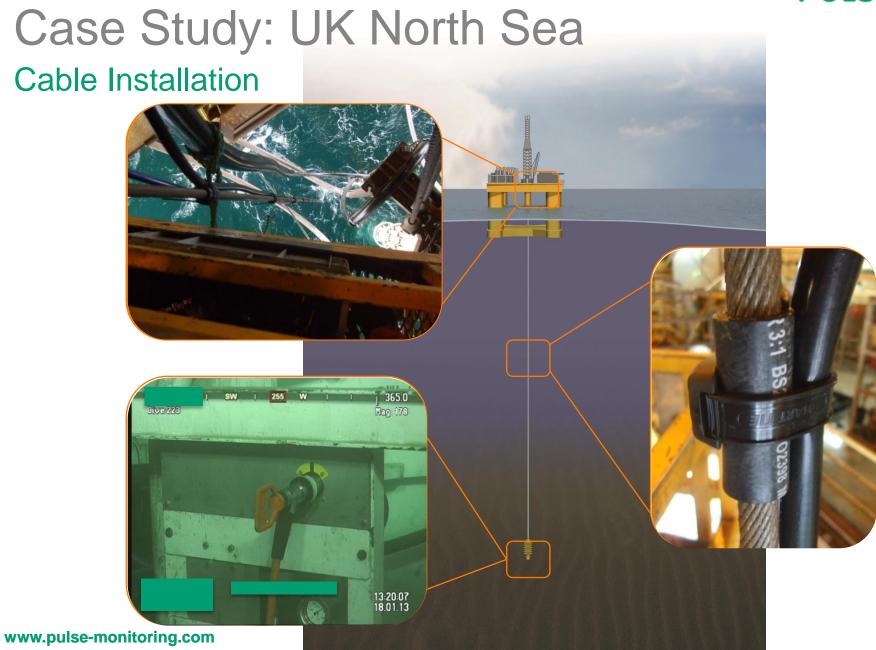
Location	Centre of vessel	Lower riser, Tree & LMRP	LMRP
Measuring	Vessel motions	Tree vs LMRP motion	LMRP displacement
Installation	Bolted topside	Riser-strapped Tree/LMRP- magnetic	Logger installed while LMRP on deck
Logging Period	Real time	15 minutes every hour	Real time
Battery	N/A	60 days	N/A

Standalone logger installation



Standalone logger installation

ROV deployable loggers on LMRP &Tree



Environmental monitoring

- ADCP
 - Current strength
 - Current speed
- Identify any correlation with LMRP motion
- Wave height & direction data from 3rd party

Case Study – Drilling Monitoring Online Integrity Management

Pre-Job

Consultant

Integrity Management

- KPI determination
- Traffic light levels
- · Communication protocol

Riser Analysis

- Hotspot location
- Fatigue damage accumulation
- · Monitoring requirement

Operator

Operational Requirements

- · Potential issues
- Data frequency
- · Details of campaign length

During operations

Offshore

Data Acquisition Sensors

- BOP motion
- Riser motion
- Metocean (wave, current)

Online Software Interface

- BOP displacement
- Fatigue damage at defined locations
- Green/amber/red warnings defined

Onshore-Consultant

Onshore Analysis

- Medium priority warnings (orange traffic lights) analysed withinin defined operational timeframe
- Report analysis and conclusions to client
- · Decision whether to escalate

Offshore -Operator

Offshore Action Taken

- Change operational parameters
 - Tension
 - Vessel position
 -
- Stop operations

Onshore - Operator

Online Decision Making

- Review of escalated issues and risk assessment carried out:
- Operational action taken
- · 01
- KPI's reviewed and/or refined

Data Processing, Visualisation & Management

Use of KPIs to Simplify and Visualise

Key Performance Indicator	Measurement Method	Quantity	Units	Green	Orange	Red
Wellhead bending	BOP Motion Sensor	Angular Rate	deg	below orange	1	3
Wellhead tension	Tension Strain Measurement	Inferred Tension Variation	Те		±10%	±25%
Fatigue	-	Inferred Accumulated Fatigue Damage			5% of fatique life in 24 hour period	10% of fatigue life in 3 hour period
accumulation		Inferred Accumulated Fatigue Damage	-		50%	90%
VIV warning	BOP Motion Sensor	Response Frequency	Hz		±20% of natural frequency	±20% of natural frequency
		Amplitude at Response Frequency	m		A/D = 0.25	A/D=0.5
Wave	Wave Radar	Wave Height	m		normal operating limit	extreme operating limit
Current	ACDP	Speed	m/s		normal operating limit	extreme operating limit

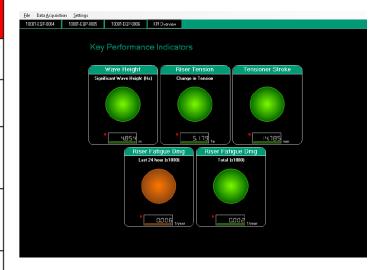


Figure 2.2.2 - KPI Parameters & Actions (example)

Data Processing, Visualis Management

Stress Transfer Comparison

Data Processing, Visualisation & Management Sample screenshot

Real time subsea monitoring

- Continuing to see requirement for 'immediate knowledge'
- Hardwired- provides maximum speed and power of data
- Data available for analysis in minutes
- Trade off between data availability vs cost/ risk

Thank You

Questions?

