Condition Monitoring of 'Ageing' Subsea Control Systems

Alex Collie

Subsea Controls Technical Authority Bennachie Electronics Ltd

Subsea Control System

- Topsides Equipment
 - Master Control Station (MCS)
 - Electrical Power Unit (EPU)
 - Hydraulic Power Unit (HPU)
 - Topsides Umbilical Termination Unit (TUTU)
- Subsea Equipment
 - Umbilical (Hydraulics, Electrics & Chemicals)
 - Umbilical Termination Assembly (UTA)
 - Subsea Distribution Unit (SDU)
 - Electro-Hydraulic Jumpers
 - Subsea Control Modules (SCMs)
 - Instruments (Pressure, Temperature, Position)
 - Xmas Tree Valves & Manifold Valves

Subsea Control System

So what goes wrong ?

- Hydraulic Leaks
 - Major Leaks
 - Weeps & Seeps
- Insulation Resistance (IR)
 - Sudden Loss
 - Gradual Degradation

Hydraulic Leaks

- Major Leaks
 - Hose Rupture
 - Directional Control Valve (DCV) Temporary Misalignment (Interflow)
 - DCV Failure
- Weeps & Seeps
 - Hose Fittings become loose
 - DCV wear
 - Valve Seal wear

Monitoring for Hydraulic Leaks

- Major Leaks are easy to identify
 - Sudden Pressure Loss
 - Increased Usage of Fluid (HPU Tank Level or Flow)
- Weeps & Seeps are far less obvious and need much greater scrutiny
 - Long term data capture to allow analysis & trending
 - Comparison against other similar subsea data points

Monitoring for Hydraulic Leaks

Monitoring for Hydraulic Leaks

Insulation Resistance

• What is Insulation Resistance

Insulation Resistance

• How do we measure it

Insulation Resistance

- Sudden Loss
 - EPU trip (over-current)
 - Total attenuation of comms
- Gradual Degradation
 - Continuously reducing IR
 - Intermittent Line Insulation Monitor (LIM) trips
 - Intermittent comms error / losses

Monitoring of IR

- LIM Readings
 - IR is a constantly changing value
 - Long term data capture to allow analysis & trending
 - How often to log ?
 - Differences in trace obtained from different log periods
 - Cyclic nature of reading
 - How long until it fails ?

What else should we be monitoring ?

- HPU Fluid Cleanliness
- HPU Pump run / stop cycle
- HPU Pressure Control
- EPU Voltage
- EPU Current
- EPU Power Factor
- Umbilical Capacitance
- MCS Modem Errors
- SCM Comms Errors
- All SCM Housekeeping Data
- All important process data

Case Study

- Triton Electrical Integrity
 - Initial Degradation
 - Increased Instability
 - Ultimate Failure

2007

Triton LIM Data 08/02/2007 - 10/03/2007

January 2009

Triton EPU Ch1 - Ch4 LIM Data 01/01/2009 - 31/01/2009

Date Time

April 2009

Triton EPU Ch1 - Ch4 LIM Data 01/04/2009 - 30/04/2009

June 2009

Triton EPU Ch1 - Ch4 LIM Data 01/06/2009 - 30/06/2009

July 2009

Jul 2010

Oct 2010

RAG Analysis by Month (2009)

EPU Channel	March	April	May	June	July	August	Sept
Channel 1							
Channel 2							
Channel 3							
Channel 4							
Channel 5							
Channel 6							
Channel 7							
Channel 8							
Channel 9							
Channel 10							
Channel 11							
Channel 12							

IR Analysis

- Art
- Science
- Engineering Experience
- Actually a bit of all 3

Benefits of Integrity Monitoring

- Monthly Report £2500 per system per asset (£60k p/a)
- Electrical Jumper ~ £5k
- Electrical Jumper Lead time 12~16 weeks
- DSV Lead time 2~?? weeks
- Planned DSV Repair Cost £400k
- Unplanned DSV Cost £700k+
- Lost Production Revenue £300k £??MM
- Proactive rather than Reactive

Subsea Controls Integrity Monitoring

- Thank you for listening
- Any Questions ?