Condition Monitoring of ‘Ageing’ Subsea Control Systems

Alex Collie
Subsea Controls Technical Authority
Bennachie Electronics Ltd
Subsea Control System

- **Topsides Equipment**
 - Master Control Station (MCS)
 - Electrical Power Unit (EPU)
 - Hydraulic Power Unit (HPU)
 - Topsides Umbilical Termination Unit (TUTU)
- **Subsea Equipment**
 - Umbilical (Hydraulics, Electrics & Chemicals)
 - Umbilical Termination Assembly (UTA)
 - Subsea Distribution Unit (SDU)
 - Electro-Hydraulic Jumpers
 - Subsea Control Modules (SCMs)
 - Instruments (Pressure, Temperature, Position)
 - Xmas Tree Valves & Manifold Valves
Subsea Control System

- EPU
- MCS
- HPU
- TUTU
- UTA
- SDU
 - SCM
 - SCM
- SCM
- SCM
- PT
- TT
- ZT
- XV
So what goes wrong?

- Hydraulic Leaks
 - Major Leaks
 - Weeps & Seeps
- Insulation Resistance (IR)
 - Sudden Loss
 - Gradual Degradation
Hydraulic Leaks

- Major Leaks
 - Hose Rupture
 - Directional Control Valve (DCV) Temporary Misalignment (Interflow)
 - DCV Failure
- Weeps & Seeps
 - Hose Fittings become loose
 - DCV wear
 - Valve Seal wear
Monitoring for Hydraulic Leaks

- Major Leaks are easy to identify
 - Sudden Pressure Loss
 - Increased Usage of Fluid (HPU Tank Level or Flow)
- Weeps & Seeps are far less obvious and need much greater scrutiny
 - Long term data capture to allow analysis & trending
 - Comparison against other similar subsea data points
Monitoring for Hydraulic Leaks
Monitoring for Hydraulic Leaks
Insulation Resistance

- What is Insulation Resistance
Insulation Resistance

- How do we measure it
Insulation Resistance

- Sudden Loss
 - EPU trip (over-current)
 - Total attenuation of comms
- Gradual Degradation
 - Continuously reducing IR
 - Intermittent Line Insulation Monitor (LIM) trips
 - Intermittent comms error / losses
Monitoring of IR

- LIM Readings
 - IR is a constantly changing value
 - Long term data capture to allow analysis & trending
 - How often to log?
 - Differences in trace obtained from different log periods
 - Cyclic nature of reading
 - How long until it fails?
What else should we be monitoring?

- HPU Fluid Cleanliness
- HPU Pump run / stop cycle
- HPU Pressure Control
- EPU Voltage
- EPU Current
- EPU Power Factor
- Umbilical Capacitance
- MCS Modem Errors
- SCM Comms Errors
- All SCM Housekeeping Data
- All important process data
Case Study

- Triton – Electrical Integrity
 - Initial Degradation
 - Increased Instability
 - Ultimate Failure
January 2009
April 2009
June 2009
Oct 2010
RAG Analysis by Month (2009)

<table>
<thead>
<tr>
<th>EPU Channel</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>Sept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IR Analysis

- Art
- Science
- Engineering Experience
- Actually a bit of all 3
Benefits of Integrity Monitoring

- Monthly Report - £2500 per system per asset (£60k p/a)
- Electrical Jumper ~ £5k
- Electrical Jumper Lead time 12~16 weeks
- DSV Lead time 2~?? weeks
- Planned DSV Repair Cost £400k
- Unplanned DSV Cost £700k+
- Lost Production Revenue £300k - £??MM
- Proactive rather than Reactive
Subsea Controls Integrity Monitoring

- Thank you for listening

- Any Questions?